The PITS lab focuses on the impact and applications of probability theory and information theory to cybersecurity. The lab's cybersecurity scope is broad and cross-disciplinary, with applications spanning privacy metrics and practical privacy solutions, cyber-physical system security and applications to the power generation and distribution grid, secure information dissemination in social networks and user privacy and manipulation, perfectly secure key establishment, physically-unclonable functions, and procedural-bias-enhanced biometric user authentication.


For information dissemination in social networks, the PITS lab is conducting cross-disciplinary efforts to accurately model information-based user interaction in human networks, with the end goal of defining manipulation and differentiating it from legitimate influence. Such models can serve a variety of goals, from predicting viral trends to optimizing budget-constrained advertising, and to containing malicious misinformation.


In the area of privacy, the PITS lab is investigating privacy metrics in the context of imperfect adversarial knowledge, as well as practical solutions to navigating the privacy-utility tradeoff in various contexts.

To address the security of cyber-physical systems, the PITS lab is studying the impact of stealthy attacks on cyber-physical systems, when the attacker, and possibly the controller, have imperfect information about the system model.

In the area of biometric authentication, the PITS lab is investigating computer-induced procedural biases as a means of enhancing the performance of established continuous biometric authentication algorithms.

In the past, the PITS lab has developed practical protocols for non-traditional key establishment based on common randomness harvested from networking metadata in ad-hoc wireless networks. As a part of the same effort, the lab developed efficient methods for calculating the theoretical bounds for the secret-key capacity of complex sources of randomness, representable as sibling hidden Markov processes.


In the area of physically-unclonable functions (PUFs), the PITS lab exposed for the first time the discharge inversion effect (DIE) in SRAM-based PUFs. If not well controlled for when learning the SRAM statistics necessary for fuzzy extraction, the DIE has the potential to cause catastrophic failure in authentication or randomness generation applications.


PITS Lab Personnel

Abiola Osho

PhD student

Abiola is a PhD student who joined the PITS lab in 2017. Abiola earned a bachelor's degree in Computer Engineering from Olabisi Onabanjo University, Nigeria and a master's in Computer science from The University of Ibadan, Nigeria. She has over 3 years' industry experience in Networking and IT service management.

Chandra Sharma

PhD student

Chandra is a PhD student who joined the PITS lab in 2017. He got his BS degree in Computer Engineering from Kathmandu Engineering College in 2015. His interests are focused on Information Security and Cryptography, as well as on Distributed Systems and Programming Languages. He is currently working on producing new exploits, powerful enough to circumvent current existing defenses.

Adaeze Okeukwu

PhD student

Adaeze is a Phd student who joined the PITS lab in 2019. Her research interest centers around the intersection of machine learning and security, more specifically in network security. She obtained her bachelor’s degree In Mathematics and Computer Science from the Federal University of Technology Minna, Nigeria, and had worked as a Network Security Administrator for 4 years.

Stephanie Harshbarger

PhD student

Stephanie is a PhD student who joined the PITS lab in 2019. Stephanie earned a B.S. degree in Computer Science and Mathematics from the University of Nebraska Kearney. Her research interests are Cyber Security and Cryptography. Stephanie is currently working on analyzing the security of control systems.

Bishwas Mandal

PhD Student

Bishwas is a PhD student who joined the PITS lab in 2020. He graduated with his B.S. degree in Computer Science from Koneru Lakshmaiah Education Foundation, India in August, 2019. His research interests are focused on Information Security and Privacy. He is currently working on Social Media Privacy.

Joy Hauser

MS student

Joy Hauser is a Master's student at Kansas State University in Computer Science. She is doing research in malware detection specifically focusing on malware for mobile devices. However, she has done research in other topics that involve cyber security and artificial intelligence. Joy is a CyberCorps: Scholarship for Service recipient and has been very involved with student organizations including the Cyber Defense Club. She is currently working for the Federal Reserve Bank.

Ethan Tucker

Undergraduate student

Ethan is an undergraduate student in Computer Science at Kansas State University. He is currently assisting in projects for modelling user behaviors in social media.

Shahnewaz Sakib

PhD student, Iowa State University

Shahnewaz is a PhD student in the department of Computer Engineering (with a specialization in Secure and Reliable Computing) at Iowa State University. He earned his Bachelor degree in Electrical and Electronic Engineering from Bangladesh University of Engineering and Technology. His research interest include Cyber security, Information Theory and Cryptography. His work examines the secure key establishment protocols for wireless network systems, and he has been working with George Amariucai since 2016.